Nonhomogenous Fluids

Modellansatz - Un podcast de Gudrun Thäter, Sebastian Ritterbusch

Catégories:

In this episode Gudrun talks with her new colleague Xian Liao. In November 2018 Xian has been appointed as Junior Professor (with tenure track) at the KIT-Faculty of Mathematics. She belongs to the Institute of Analysis and works in the group Nonlinear Partial Differential Equations. She is very much interested in Dispersive Partial Differential Equations. These equations model, e.g., the behaviour of waves. For that it is a topic very much in the center of the CRC 1173 - Wave phenomena at our faculty. Her mathematical interest was always to better understand the solutions of partial differential equations. But she arrived at dispersive equations through several steps in her carreer. Originally she studied inhomogeneous incompressible fluids. This can for example mean that the fluid is a mixture of materials with different viscosities. If we have a look at the Navier-Stokes equations for materials like water or oil, one main assumption therein is, that the viscosity is a material constant. Nevertheless, the equations modelling their flows are already nonlinear and there are a few serious open questions. Studying flows of inhomogneous materials brings in further difficulties since there occur more and more complex nonlinearities in the equations. It is necessary to develop a frame in which one can characterise the central properties of the solutions and the flow. It turned out that for example finding and working with quantities which remain conserved in the dynamics of the process is a good guiding line - even if the physical meaning of the conserved quantitiy is not always clear. Coming from classical theory we know that it makes a lot of sense to have a look at the conservation of mass, energy and momentum, which translate to conserved quantities as combinations of velocity, its derivatives, pressure and density. Pressure and density are not independent in these simplified models but are independent in the models Xiao studies. In the complex world of inhomogeneous equations we lose the direct concept to translate between physics and mathematics but carry over the knowledge that scale invarance and conservation are central properties of the model. It is interesting to characterize how the complex system develops with a change of properties. To have a simple idea - if it is more developing in the direction of fast flowing air or slow flowing almost solid material. One number which helps to see what types of waves one has to expect is the Mach number. It helps to seperate sound waves from fluid waves. A mathematical/physical question then is to understand the process of letting the Mach number go to zero in the model. It is not that complicated to make this work in the formulae. But the hard work is done in proving that the solutions to the family of systems of PDEs with lower and lower Mach number really tend to the solutions of the derived limit system. For example in order to measure if solutions are similar to each other (...)

Visit the podcast's native language site